General Certificate of Education January 2007 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

MATHEMATICS Unit Pure Core 1

MPC1

Wednesday 10 January 2007 1.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You must **not** use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is **not** permitted.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

P94524/Jan07/MPC1 6/6/6/ MPC1

Answer all questions.

1 The polynomial p(x) is given by

$$p(x) = x^3 - 4x^2 - 7x + k$$

where k is a constant.

- (a) (i) Given that x + 2 is a factor of p(x), show that k = 10. (2 marks)
 - (ii) Express p(x) as the product of three linear factors. (3 marks)
- (b) Use the Remainder Theorem to find the remainder when p(x) is divided by x 3.

 (2 marks)
- (c) Sketch the curve with equation $y = x^3 4x^2 7x + 10$, indicating the values where the curve crosses the x-axis and the y-axis. (You are **not** required to find the coordinates of the stationary points.) (4 marks)
- 2 The line AB has equation 3x + 5y = 8 and the point A has coordinates (6, -2).
 - (a) (i) Find the gradient of AB. (2 marks)
 - (ii) Hence find an equation of the straight line which is perpendicular to AB and which passes through A. (3 marks)
 - (b) The line AB intersects the line with equation 2x + 3y = 3 at the point B. Find the coordinates of B. (3 marks)
 - (c) The point C has coordinates (2, k) and the distance from A to C is S. Find the **two** possible values of the constant K.
- 3 (a) Express $\frac{\sqrt{5}+3}{\sqrt{5}-2}$ in the form $p\sqrt{5}+q$, where p and q are integers. (4 marks)
 - (b) (i) Express $\sqrt{45}$ in the form $n\sqrt{5}$, where *n* is an integer. (1 mark)
 - (ii) Solve the equation

$$x\sqrt{20} = 7\sqrt{5} - \sqrt{45}$$

giving your answer in its simplest form. (3 marks)

- 4 A circle with centre C has equation $x^2 + y^2 + 2x 12y + 12 = 0$.
 - (a) By completing the square, express this equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

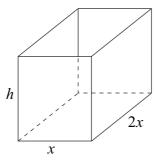
- (b) Write down:
 - (i) the coordinates of C; (1 mark)
 - (ii) the radius of the circle. (1 mark)
- (c) Show that the circle does **not** intersect the x-axis. (2 marks)
- (d) The line with equation x + y = 4 intersects the circle at the points P and Q.
 - (i) Show that the x-coordinates of P and Q satisfy the equation

$$x^2 + 3x - 10 = 0 (3 marks)$$

- (ii) Given that P has coordinates (2, 2), find the coordinates of Q. (2 marks)
- (iii) Hence find the coordinates of the midpoint of PQ. (2 marks)

Turn over for the next question

5 The diagram shows an **open-topped** water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length 2x metres, and the height of the tank is h metres.



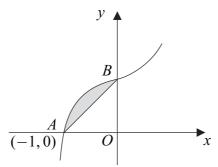
The combined internal surface area of the base and four vertical faces is $54\,\mathrm{m}^2$.

- (a) (i) Show that $x^2 + 3xh = 27$. (2 marks)
 - (ii) Hence express h in terms of x. (1 mark)
 - (iii) Hence show that the volume of water, $V \, \mathrm{m}^3$, that the tank can hold when full is given by

$$V = 18x - \frac{2x^3}{3} \tag{1 mark}$$

- (b) (i) Find $\frac{dV}{dx}$. (2 marks)
 - (ii) Verify that V has a stationary value when x = 3. (2 marks)
- (c) Find $\frac{d^2V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x = 3.

6 The curve with equation $y = 3x^5 + 2x + 5$ is sketched below.



The curve cuts the x-axis at the point A(-1,0) and cuts the y-axis at the point B.

- (a) (i) State the coordinates of the point B and hence find the area of the triangle AOB, where O is the origin. (3 marks)
 - (ii) Find $\int (3x^5 + 2x + 5) \, dx$. (3 marks)
 - (iii) Hence find the area of the shaded region bounded by the curve and the line AB.

 (4 marks)
- (b) (i) Find the gradient of the curve with equation $y = 3x^5 + 2x + 5$ at the point A(-1,0). (3 marks)
 - (ii) Hence find an equation of the tangent to the curve at the point A. (1 mark)
- 7 The quadratic equation $(k+1)x^2 + 12x + (k-4) = 0$ has real roots.
 - (a) Show that $k^2 3k 40 \le 0$. (3 marks)
 - (b) Hence find the possible values of k. (4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page